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ABSTRACT 
 

Discrete event simulation has been successfully employed as an analysis tool for predicting the 
effect changes have on existing and hypothetical systems.  This insight allows for more informed 
appraisals of alternatives, greatly enhancing the planning function. 

Simulation modelling allows microscopic analysis of complex system dynamics giving the 
intimate understanding required to maximise the efficiency of such systems.  As well as being 
used to predict the future and explain the operation of complex processes, simulation models are 
also used in real-time control systems to provide decision support for automated (intelligent) 
decision makers. 

Current research suggests that a combination of simulation and ‘meta-heuristic’ optimisation 
techniques applied to analytically intractable problems can yield optimal or near optimal 
solutions. This paper gives a brief review of the history of discrete event simulation and 
discusses the role of simulation modelling in the ever-changing manufacturing environment.  It 
pays particular attention to the importance of simulation in intelligent, highly automated, flexible 
manufacturing systems.  It details a case study in which a simulation model and an optimisation 
strategy are integrated as part of an intelligent decision maker.  This application implements an 
adaptation of the Amherst – Karlsruhe model of an automated dynamic scheduling system. 
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1. INTRODUCTION 
 
The idea of manufacturing industries having to re-invent themselves is by no means a new 
concept.  As markets globalise, pressure to sustain competitiveness has become more intense.  
Escalating labour costs in developed countries have forced companies to either increase levels of 
process automation, or relocate to more viable economic environments.  Also, increased 
competition allows customers dictate specific requirements to manufacturers.  Demand for high 
variability and low volume has been met by increasing levels of automation and implementing 
concepts such as Flexible Manufacturing Systems (FMS), and Computer Integrated 
Manufacturing (CIM).   
 
As manufacturing facilities and their control systems increase in complexity, it becomes difficult 
if not impossible to optimise the design of, understanding of, and operating efficiency of these 
facilities, using conventional management techniques.  To overcome this problem managers have 
turned to relatively new techniques such as Simulation modelling and Artificial Intelligence (AI).  
Simulation models are built to support the decision making process be it at a long term strategic 
level or real-time on the factory floor.  Used in conjunction with AI technologies such as rule or 



knowledge-based expert systems, simulation can provide decision support in an automated 
decision making environment. 
 
2 MODELLING OF SYSTEMS 
 
2.1 Mathematical modelling 
As human beings we continually strive to understand the dynamics of the world that surrounds 
us.  Scientists ask questions in an attempt to unravel the mysteries of the physical world.  
Economists attempt to understand what influences financial and commercial markets.  In order to 
understand the dynamics of any system, its behaviour must be studied in a variety of situations, 
under the effects of a variety of influences.  In some instances it is possible to experiment using 
the physical system itself.  However, in many cases it is impossible or impractical to do so. 
 

“A new system may not yet exist; it may be only in hypothetical form or at the design stage.  

Even if the system exists, it may be impractical to experiment with it.  For example, it may 

not be wise or possible to double the unemployment rate to determine the effect of 

unemployment on inflation.  In the case of a bank, reducing the number of tellers to study the 

effect on the length of waiting lines may infuriate the customers so greatly that they move 

their accounts to a competitor.”  

     Banks et al (1996) 
 
 
The alternative to experimenting using the actual system is to experiment using a model that 
mimics the behaviour of the system.  In reality this representation is in the form of a 
mathematical expression that describes a direct relationship between the input variables and the 
resulting output.  The basic modelling process is shown in Figure 1.  The modelling process is 
not simply a case of formulating a mathematical model that accurately mimics a “real-life” 
system.  The results of any particular experiment must be interpreted in order to infer what their 
significance is in terms of the real world. 
 
Mathematical models can involve anything from simple linear equations to complex non-linear 
differential equations.  Even the simplest “real-life” situations can be exposed to a complex 
interaction of both deterministic and stochastic variables.  As a result, mathematical or analytical 
models rely heavily on the assumptions and simplifications upon which they are based.  This is 
adequate under controlled experimental conditions, but when confronted with real-life scenarios, 
many mathematical models are rendered useless.  For this reason, in complex situations such as 
the dynamic scheduling of an FMS, the development of a single global function that accurately 
describes the relationship between input variables and the system output becomes impossible 
without risking significant loss of model integrity.  Invalidation of the model can result from 
over simplification of the problem. 
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Figure 1, The Modelling Process, Ravindran et al (1987) 

 
 
2.2 Simulation modelling 
Simulation modelling is derived from a different approach to problem solving to its analytical 
counterpart.  Traditional approaches tackle a problem in a single all-encompassing expression 
that attempts to incorporate even the most intricate and subtle relationships between variables.  
Simulation on the other-hand takes the view that large problems are really only a series of 
smaller problems that interact with one another.  Therefore, if each of these sub-problems can be 
modelled mathematically then all that remains to complete the solution to the overall problem is 
to model the relationships between each of these sub-problems.  Taha (1997) emphasises this 
point in a comparative description of simulation modelling and traditional mathematical 
modelling. 

“It differs from mathematical modelling in that the relationship between the input and output 

need not be stated explicitly.  Instead, it breaks down the real system into (small) modules 

and then imitates the actual behaviour of the system by using logical relationships to link the 

modules together.  Starting with the input module, the simulation computations move among 

the appropriate modules until the output result is realised.” 

Taha goes on to explain that one of the main advantages simulation modelling has over rigid 
mathematical systems is the flexibility that results from its simplicity, stating: 

“Simulation models are much more flexible in representing systems than their mathematical 

counterparts.  The main reason for this flexibility is that simulation views the system at 

elemental level, whereas mathematical models tend to represent the system from a more 

global standpoint.” 

Taha (1997) 
 



 
2.3 The New Emerging Role of Simulation in Manufacturing 
Simulation, in addition to giving the user insight into how complex systems function and how 
variables interact with each other, provides the user with an informative approximation of “what-
if” scenarios.  To date much discussion has centred on using simulation to assist in supporting 
long-term strategic decisions.  The success of simulation modelling in this role has however been 
mixed.  In the past decade simulation modelling has taken on a new role providing analytical 
support to real-time decision makers.  In the context of completely automated and flexible 
manufacturing systems, these decision makers are often AI components.  Thus simulation 
models have become completely integrated as modules of automated control systems.  McNally 
and Heavey (2002) describe this emerging niche.   

“Other researchers have been proposing the extension of simulation tools beyond a 

traditional design role (Dewhurst et al 2001, Kosturiak and Gregor 1999).  With this 

approach the same model can be extended with control functions and interfaces with the 

environment (shop floor data collection systems and production planning and control 

databases) to support dynamic scheduling of production orders, capacity plans, labour 

allocations etc.” 

“One area to emerge over the last decade has been the real time control and planning of 

manufacturing systems using computer simulation, especially in the area of flexible 

manufacturing systems…   …the simulation model is linked to the controllers of the 

flexible manufacturing system.  Real time activities primarily refer to daily operations that 

require efficient, timely, and adaptive responses to short-term planning, scheduling and 

execution problems.” 

 
3 MPECS – A MULTI-PASS EXPERT CONTROL SYSTEM FOR FMS CONTROL 

AND SCHEDULING 
The MPECS model (Figure 2) of an automated manufacturing environment incorporates a 
simulation model in its design structure.  This control architecture described by Wu (1989), 
combines expert system technology with a discrete event simulator.  The dynamic control system 
uses the simulator as an evaluation tool in the decision making process.  The scheduler contains 
the following key elements: 
 

• An expert system to generate potential scheduling alternatives based on real-time shop 
information and scheduling knowledge. 

 
• A simulation model, which is automatically generated by the control system to allow the 

system to evaluate alternative schedules based on the system performance (i.e. uses the 
simulation model as a source of feedback for system decision making). 

 
• A decision structure that will update performance rules based on “simulation/system 

experience”. 



 
• A mechanism to affect the control on a variety of Flexible Manufacturing Cells. 
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Figure 2, The General Scheme of MPECS, Wu (1989) 

 
The main purpose of MPECS is to utilize the available data in a computerised manufacturing 
cell, create “good” strategies to guide the system, and generate real-time responses to make 
control decisions during system run-time.  MPECS comprises three distinct modules, an 
intelligent scheduling module (ISM), a simulation model, and a cell control module (CCM). 
 

• The arrival of new orders into the system or a request from a lower level control module 
to assist in handling some exception activates the ISM. 

• Evaluates KB, which contains scheduling rules and principles as well as shop floor 
information. 

• Applies inference procedures, ISM generates working rule module – contains current 
‘best’ scheduling methods. 



• These rules are sent to the simulator for further evaluation. 
• Whenever a request is issued to make a decision for a predictable condition, the simulator 

is used to evaluate a set of alternatives. 
• The ‘best’ schedule is sent to the cell control module for manufacture. 

 
 

4 CASE STUDY – THE AMTLAB FMS DYNAMIC SCHEDULING SYSTEM 
The Advanced Manufacturing Technology Laboratory (AMTLAB) group at Waterford Institute 
of Technology is a postgraduate research facility dedicated to the investigation and 
implementation of advanced manufacturing theories and technologies.  One particular area that 
the group has concentrated on is the development of flexible manufacturing systems.  The 
increase in complexity and subsequent introduction of automated decision-making has 
necessitated the development and integration of advanced control features such as the dynamic 
scheduling system currently being commissioned.  This scheduling system is an adaptation of the 
Amherst-Karlsruhe dynamic scheduler, essentially containing the same key components as the 
MPECS system.  The AMTLAB model (see Figure 3) does however include a number of 
distinguishing features, the most outstanding of which being the method it uses to generate the 
subset of “good quality” schedules from which it will select the “best” schedule.    
 
Scheduling problems are notoriously difficult to solve.  Scheduling tasks typically require a 
group of jobs to be arranged in an order that optimises some performance measure.  Some 
examples of performance measure used are: 
 

• The maximisation of resource utilisation in a manufacturing facility. 
• The minimisation of total makespan or leadtime of a group of orders. 
• The minimisation of number of jobs late or total lateness/tardiness. 

 
In order to find the optimum schedule for a group of jobs or orders, ideally one would test all 
possible arrangements of these jobs.  However, due to feasibility and time constraints this is 
rarely possible.  To illustrate this point, take the example of a group of 10 jobs.  This reasonably 
small problem has an extremely large solution set.  These 10 jobs can be arranged in a total of 10 
factorial (i.e. 3,628,800) unique configurations on a single machine.  On 2 machines the same 10 
jobs can be arranged (10!)2 (approximately 13,168,000,000,000) different ways.  For this reason, 
even when dealing with scheduling problems that are relatively small in magnitude, it is 
impractical to test all possible permutations and therefore it is difficult to find the optimum 
solution.  Even if an optimal schedule is found, it may be impossible to know that it is in fact the 
optimum solution.  This is the nature of NP hard combinatorial problems containing multiple 
nonlinearities and uncertainties.  As with other approaches simulation is hampered by its 
inability to test more than a fraction of the solutions.  Because it is impossible to test all solution 
permutations for most practical real-life systems, methods have been developed which isolate a 
subset of the entire solution set that contains predominately ‘good quality’ solutions.  It may 
suffice to guarantee that a result will be very close to the optimum without guaranteeing 
optimality itself, in which case an approximation technique can be employed.   
 
Approximation techniques range from the most basic of dispatching rules to sophisticated search 
algorithms.  Dispatching rules or scheduling rules are a simple form of approximation technique.  
In many cases they are empirically based on ‘rules of thumb’ that have evolved through years of 
“hands-on” experience.  The performance of each individual dispatching rule can vary 
substantially from problem to problem.  Some examples of extremely simple yet effective rules 



include ‘Earliest Due Date First’ (used when attempting to minimise the total lateness or 
tardiness in the system), and ‘Shortest Processing Time First’ (used when attempting to minimise 
the make-span for a group of orders).   
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Figure 3, The AMTLAB Dynamic Scheduling System. 

 
As part of the MPECS model, Wu (1989) describes the use of an intelligent module that selects 
the appropriate scheduling rule from a library of rules.  These rules are tested using an integrated 
simulation model.  Evaluation of the performance of each rule allows the intelligent module to 
accumulate knowledge of the system and to learn where and when to employ particular rules.  
The simulation model is an important part of the overall control system. 



“The major function of the simulation model is to evaluate control policies in a flexible 

manufacturing cell by examining the effect of the scheduling rules on an on-line test base.” 

“Thus at the end of all simulation passes, the best scheduling rule that results from the 

simulation is applied to the physical manufacturing system.  The basic principle behind the 

simulator is the use of a deterministic simulation as a short-term predictive tool for 

alternative control strategies in a manufacturing.” 

            Wu (1989). 
 
Rembold et al (1993) echo this concept in their description of the Amherst-Karslruhe dynamic 
scheduling system. 

“The heart of the system is a knowledge-based selector for scheduling methods and a library 

of logic scheduling algorithms.  The system knows from a given order and manufacturing 

status which logic scheduling algorithms have to be used to obtain the desired manufacturing 

goal and to meet due dates.” 

This conventional approach to dynamic scheduling employs a variety of simple ‘dispatching 
rules’ or more sophisticated hybrid scheduling rules to decide which alternatives to evaluate.  
Most dispatching rules are “simple single pass priority dispatching rules….once a decision is 
arrived at by the operation of a rule, it is implemented without reconsideration of alternative 
courses of action.” (King and Spachis 1980).  The choice of rule is system dependent and often 
determined by the objective criteria.  However, the performance of these rules can vary 
dramatically depending on the application.  Therefore, a more sophisticated approach is required 
in order to guarantee more reliable solutions closer to the optimum.   
 
Neighbourhood search techniques are launched from one or more starting points in the solution 
space and through a process of iterative improvement converge on a local optimum point.  A 
typical solution space is depicted in Figure 4.  It comprises a series of troughs that represent local 
optima (note: the objective in this case is to minimise the cost function).  Before the search 
process can begin, an appropriate starting point must be selected.  This starting point is typically 
determined using some heuristic such as a scheduling rule.  Scheduling rules are complex hybrid 
formulations of several dispatching rule components.  Each term is usually weighted to reflect its 
relative importance in the expression.  There is a strong positive correlation between the 
objective or cost function being optimised and the scheduling rule used to determine the start 
point.  As most cost functions incorporate the importance of the customer in their formulation, 
this factor is also built into the scheduling rule as another weighted factor.  Earlier discussion 
highlighted the fact that a well-chosen dispatching rule will give a ‘good’ solution to the 
scheduling problem.  The implication of this approach is that even the simplest search technique 
can do no worse than the dispatching rule used to generate its start point.  Also, if there is time 
available before a decision is required, the opportunity should be taken to conduct additional 
searching of the solution space as this can only serve to improve the quality of the solution.  In 
fact a good starting point is the safety net that advocates the use of any search technique 
irrespective of what it is.  



 

  
Figure 4, A Typical Solution Space 

 
In addition to acting as a safety net, a starting point in all but the most advanced search 
techniques can be significant in determining the upper bound of a particular search.  This ceiling 
effect can condemn some search techniques to sub optimal solutions from the outset.  Figure 4 
illustrates the difference between the result of using a good starting point and a poor starting 
point.  Optimisation and approximation search processes have been likened to a hiker attempting 
to find the lowest (or highest) point in a series of undulating hills that are shrouded in a dense 
fog, subject to stringent time constraints.  Unable to traverse the entire range, the hiker can only 
hypothesise about their immediate neighbourhood and by taking small steps downhill eventually 
arrive at the local minimum point.  Short of searching the entire space there is no way of 
knowing whether any particular minimum point is the global optimum. 
 
More advanced search techniques employ sophisticated techniques to avoid premature 
convergence and entrapment at local optimum points.  Genetic Algorithm (GA) is a search 
technique analogous to the genetic evolution of species over time.  By retaining ‘good’ portions 
of schedules and eliminating ‘poorer’ portions, GAs make iterative improvements to the 
objective function, evolving towards the optimum schedule.  GAs avoid entrapment at local 
minimum points by incorporating a mutation strategy that causes the search to spontaneously 
jump from one neighbourhood to another.  Another common search technique used is that of 
Simulated Annealing (SA).  This technique is analogous to the annealing process used to relieve 
stresses in the heat-treatment of materials.  Instead of employing a completely rigid strategy of 
only accepting schedules that yield improvement of the objective function, SA accepts some 
schedules that result in deterioration of the objective function, effectively allowing the search to 
cross into new search neighbourhoods by travelling “up-hill”, eventually leading the search to 
the global optimum. 



 
The AMTLAB dynamic scheduling system uses a combination of simulation and optimisation 
techniques to implement its search strategy.  The simulation and optimisation communities have 
united under the banner of Simulation-Optimisation to tackle this type of problem.  They are 
striving to develop more efficient ways of guiding a series of simulation trials towards the 
optimum. 
 

“Advances in the field of meta-heuristics – the domain of optimization that augments 

traditional mathematics with artificial intelligence and methods based on analogs to physical, 

biological or evolutionary processes – have led to the creation of a new approach that 

successfully integrates simulation and optimisation”          

           Glover et al (1999) 
 
The simulation model evaluates the tentative schedules generated by the search technique.  This 
scheduling system incorporates an innovative search technique developed to meet the precise 
needs of the FMS dynamic scheduling system.  The dynamic and complex nature of the system 
generally requires that decisions be made extremely quickly.  Therefore the search technique 
must be capable of getting as close to the optimum as possible with a limited number of 
simulation runs.  A simple yet effective strategy was devised that allows the search converge 
quickly on local optima.  It also searches across the search space in order to prevent entrapment 
at sub-optimal points.  Sufficient data is not yet available to validate the technique across a wide 
variety of situations and to conduct a comparative study with other techniques.  However, the 
concept appears to be logically sound and initial tests have proved positive. 
 
 

 
Figure 5, Sample Group of Orders 

 
As with other techniques the process begins with a group of jobs that must be scheduled in a 
manner that optimises the cost function.  Each order is prioritised using a scheduling rule.  To 
date no fixed rule has been chosen but tests have been carried out using ‘Critical Ratio’ and a 
combination of ‘Earliest Due Date First’ and ‘Longest Processing Time First’.  Figure 6 displays 
the results of all possible permutations of the 7 orders shown in figure 5.  There are 5040 in total.  
Each of the 7 groups is a sub-division of the entire solution set representing all schedules starting 
with one particular order.  The search technique makes an important distinction between static 
and dynamic scheduling.  A static schedule is a list of start and completion times for each 
individual job on each machine.  In a dynamic environment it is only necessary to establish 
which order must be launched into the manufacturing system next.  Changes happen so 



frequently and so rapidly that scheduling far beyond the next job is of little value in the long-
term. 
 
The search technique must satisfy 2 principle objectives if it is to meet its ultimate goal of 
optimality.  First of all it must ensure that it does not become trapped at a local optimum point.  
It achieves this by starting multiple searches in the neighbourhood of each local optimum.  Each 
start point is generated from the initial list of prioritised jobs.  Secondly the search must be 
capable of progressing quickly from this starting point towards each local optimum.  Closer 
examination of the complete solution space depicted in Figure 6, reveals some interesting 
characteristics.  Although more difficult to distinguish, the solution set comprises a series of 
troughs and peaks similar to that shown in Figure 4.  Referring to Figure 6, each of the 7 
groupings contains what are essentially the same schedules with one fundamental difference.  
Within in each group all of the schedules begin with the same job.   
 
 

 
Figure 6, Complete Set of Schedule Permutations 

 
 
The overall shifting of the each group’s results can be directly attributed to the significance of 
the leading job (i.e. the only major difference between the groupings).  The start point within 
each group is effectively a representative for the overall group.  The relationship between each 
group is reasonably mirrored by the relationship between group representatives.  Therefore by 
simulating each representative schedule, the search can quickly ascertain which group contains 
the optimum schedule or at worst a near optimum schedule.  Isolation of the group containing the 
optimum is equivalent to isolating the next job to be launched because every schedule in the 
group starts with the same job.  This job can then be launched.  The procedure is then repeated 
within this group when a decision is required regarding subsequent job launches. 
 
 



5 ADDITIONAL FEATURES  
The simulation model is developed using a modelling software platform called Simul8.  This 
object oriented code generator is user friendly and posses an impressive array of powerful 
modelling, coding and communication tools.  These tools allow users from non-programming 
backgrounds to develop models incorporating sophisticated functionality.  For example, the 
AMTLAB FMS simulation model is capable of changing itself dynamically to reflect changes in 
the FMS.  If processing times change or machines breakdown then the model is programmed to 
dynamically recover.  Other highly sophisticated management features have been incorporated in 
the model.  Typically two simulation models are required to handle the exceptions that occur in 
the FMS.  These models are saved at the critical points before an order is sent for manufacture 
and after this order is completely, effectively two snapshots of the system.  While this order is 
being manufactured, the scheduling system is busy searching for the next order to launch.  This 
order will start immediately after the first order.  Therefore all simulation runs used to evaluate 
schedules must reflect this fact by using the simulation model that has been saved at the point in 
time when the first order is expected to complete manufacture.  Should a breakdown occur in the 
middle of processing an order then the simulation model becomes invalid and the rescheduling 
of jobs is required.  This is an extremely complex task.  First of all the simulation model that was 
saved prior to the launch of the order in question must be opened.  By comparing the work done 
and that remaining, the simulation model is “fast-forwarded” to the identical point where the 
breakdown occurred.  The simulation model then dynamically modifies itself to reflect the fact 
that the FMS now has 1 less machine at its disposal.  The system is then ready to continue. 
 
6 CONCLUSIONS 
As manufacturing systems become increasingly more complex, the role of simulation in helping 
to explain their operation is becoming evermore important.  Simulation models allow us to ask 
“what-if” questions and make confident decisions as a result.  Until recently simulation 
modelling was more “black-art” than science, now user-friendly modelling platforms such as 
Simul8 allow users to develop their own simulation models and with the aid of powerful 
communication tools embed these models in complex, automated, and intelligent control 
systems. 
 
The versatility of simulation modelling has allowing it to explore new challenges easing 
comfortably into a variety of roles.  Its marriage to optimisation and approximation search 
techniques has lead to the development of sophisticated yet practical and understandable systems 
that can take-on mammoth scheduling tasks.  Even though many of these techniques are still in 
their infancy, promising results could have far reaching consequences for optimisation problems 
in other domains. 
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